611-1130 (35-145) Breaking Board Demonstration

Warranty and Parts:

We replace all defective or missing parts free of charge. Additional replacement parts may be ordered toll-free. We accept MasterCard, Visa, checks and School P.O.s. All products warranted to be free from defect for 90 days. Does not apply to accident, misuse or normal wear and tear. Intended for children 13 years of age and up. This item is not a toy. It may contain small parts that can be choking hazards. Adult supervision is required.

Our Breaking Board Apparatus consists of a set of 10

wooden boards and a sheet of Newsprint. Any sheet of a normal sized newspaper will work the same. One board is laid out on a table, overhanging the edge. It is covered by a single sheet of paper. When the slab is struck, it breaks, rather than rotating away. Because of the large surface area, the inertia of air is equivalent to over 6000kg holding the board down.

How to Teach with the Breaking Board Demonstration:

Concepts Taught: Inertia, Weight of Air

Curriculum Fit: Physics Sequence; Force and Motion. Grades 6-8 and up.

How to use the Breaking Board Demonstration

- 1) Make sure the demonstrator and bystanders are wearing Ansi Z87.1 or better impact safety goggles.
- 2) Set up the demonstration by laying a board on a table with 2/3 on the table and 1/3 off the table.
- 3) Crumple up a sheet of paper and place on the end of the board that is on the table.
- 4) Using a quick motion, swat the board on the side that is off the table. The paper will fly up into the air.
- 5) Now, set the board as before, but this time setting the sheet of Newsprint or Newspaper on top of the board which is resting on the table.
- 6) Using a quick motion, swat the board on the side that is protruding from the table.

What Happened? The board broke in two.

Why did this happen? Newton's Second Law shows that Force= Mass times Acceleration

Force (F) is mass (m) times acceleration (a) $F = m \cdot a$. Momentum (p) is mass times velocity (v): $p = m \cdot v$. Since acceleration measures change in velocity over time (t) (put another way, acceleration is the derivative of velocity with respect to time), force is the derivative of momentum with respect to time. Equivalently, force times time equals change in momentum, or **impulse** (Δp): $\Delta p = F \cdot t$. This is significant because momentum is a conserved quantity. It can be neither created nor destroyed, but is passed from one object (the hand) to another (the board). The reason for this conservation is Newton's third law of motion, which states that if an object exerts a force on another object for a given time, the second object exerts a force equal in magnitude but opposite in direction (force being a vector quantity) on the first object for the same amount of time so the second object gains exactly the amount of momentum the first object loses. Momentum is thus transferred. With Δp a fixed quantity, F and t are necessarily inversely proportional. One can deliver a given amount of momentum by transferring a large force for a short time or by transferring small amounts of force continuously for a longer time.

In order to break a board (or any kind of material), you must cause a shearing moment in the board that is larger than the critical moment for wood. When you try to break the board, the board itself is supported on one side by atmospheric pressure pushing down on the board. The Force on the other side of the board comes from the impulse you have created. The edge of the table becomes the pivot point (or fulcrum). When the force meets the board, the top of the board will be in a state of tension and the bottom will be in compression. This will produce a torque on an axis through the middle of the board. If the torque is great enough the board will break.

Experiment Suggestions:

- 1) Try different objects with varying weights and dimensions. See which ones allow the board to break.
- 2) Try two boards on top of one another. Do they still break with the same effort?
- 3) Does a person's overall body mass effect this demonstation?

Benchmarks and Standards

This investigation provides support for the *Benchmarks for Science Literacy* and *National Science Education Standards* shown in the table below.

Benchmarks for				National Science Education Standard
Science Literacy				
			Grades $5 - 8$	"The motion of an object can be
			Physical	described by its position, direction of
			Science	motion and speed. The motion can be
			Content	measured and represented on a graph."
			Standard	(p. 154)
			B.1 – Motions	
			and	
			Forces	
Grades 3 – 5	4 B .1	"Changes in speed or	Grades 5 – 8	"An object that is not being subjected
The Physical Setting		direction of motion are	Physical	to a force will continue to move at a
,		caused by forces. The	Science	constant speed and in a straight line."
		greater the force is the	Content	(p. 154)
		greater the change in	Standard	<i>u</i> ,
		motion will be."	B.2 – Motions	
			and Forces	
Grades 6 – 8	4B.3	"An unbalanced force	Grades 5 -8	"If more than one force acts on an
The Physical Setting		acting on an object	Physical	object along a straight line, then the
		changes its speed or	Science	forces will reinforce or cancel one
		direction of motion, or	Content	another, depending on their direction
		both.	Standard	and magnitude. Unbalanced forces
			B.3 – Motions	will cause changes in speed or
			and	direction of an object's motion." (p.
			Forces	154)
Grades 9 – 12	4B.1	"The change in motion	Grades 9-12	"Objects change their motion only
The Physical Setting		of an object is	Physical	when a net force is applied. Laws of
		proportional to the	Science	motion are used to calculate precisely
		applied force and	Content	the effects of forces on the motion of
		inversely proportional	Standard	objects. The magnitude of the change
		to the mass."	B.1 – Motions	in motion can be calculated using the
			and	relationship $F = ma$, which is
			Forces	independent of the nature of the force.
				Whenever one object exerts a force on
				another, a force equal in magnitude
				and opposite in direction is exerted on
				the first object." (p. 180)